Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1.
نویسندگان
چکیده
Smads, key effectors of transforming growth factor (TGF)-beta, activin, and bone morphogenetic protein (BMP) signaling, regulate gene expression and interact with coactivators and corepressors that modulate Smad activity. The corepressor Evi-1 exerts its oncogenic effects by repressing TGF-beta/Smad3-mediated transcription, thereby blocking TGF-beta-induced growth arrest. Because Evi-1 interacts with the highly conserved MH2 domain of Smad3, we investigated the physical and functional interaction of Evi-1 with Smad1 and Smad2, downstream targets of BMP and activin signaling, respectively. Evi-1 interacted with and repressed the receptor-activated transcription through Smad1 and Smad2, similarly to Smad3. In addition, Evi-1 repressed BMP/Smad1- and activin/Smad2-mediated induction of endogenous Xenopus gene expression, suggesting a role of repression of BMP and activin signals by Evi-1 in vertebrate embryogenesis. Evi-1 also repressed the induction of endogenous Smad7 expression by TGF-beta family ligands. In the course of these studies, we observed Evi-1 repression of Smad transactivation even when Smad binding to DNA was kept constant. We therefore explored the mechanism of Evi-1 repression of TGF-beta family-inducible transcription. Evi-1 repression did not result from displacement of Smad binding to DNA or to CREB-binding protein but from the recruitment of Evi-1 by Smad3 and CREB-binding protein to DNA. Following TGF-beta stimulation, Evi-1 and the associated corepressor CtBP were recruited to the endogenous Smad7 promoter. Evi-1 recruitment to the promoter decreased TGF-beta-induced histone acetylation, coincident with its repression of Smad7 gene expression. In this way, Evi-1 acts as a general Smad corepressor to inhibit TGF-beta-, activin-, and BMP-inducible transcription.
منابع مشابه
Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis in B cells.
Smad6 and Smad7 prevent ligand-induced activation of signal-transducing Smad proteins in the transforming growth factor-beta family. Here we demonstrate that both Smad6 and Smad7 are human bone morphogenetic protein-2 (hBMP-2)-inducible antagonists of hBMP-2-induced growth arrest and apoptosis in mouse B cell hybridoma HS-72 cells. Moreover, we confirmed that the ectopic expressions of Smad6 an...
متن کاملTranscriptional regulation of the Xlim-1 gene by activin is mediated by an element in intron I.
The Xlim-1 gene is activated in the late blastula stage of Xenopus embryogenesis in the mesoderm, and its RNA product becomes concentrated in the Spemann organizer at early gastrula stage. A major regulator of early expression of Xlim-1 is activin or an activin-like signal. We report experiments aiming to identify the activin response element in the Xlim-1 gene. The 5' flanking region of the ge...
متن کاملSmad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state.
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We...
متن کاملAlk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis.
OBJECTIVE Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2, and Alk3 in mouse retinal v...
متن کاملThe corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling.
Evi-1 is a zinc finger nuclear protein whose inappropriate expression leads to leukemic transformation of hematopoietic cells in mice and humans. This was previously shown to block the antiproliferative effect of transforming growth factor beta (TGF-beta). Evi-1 represses TGF-beta signaling by direct interaction with Smad3 through its first zinc finger motif. Here, it is demonstrated that Evi-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 25 شماره
صفحات -
تاریخ انتشار 2005